

Our innovative solutions for nanoparticle size measurements

VASCO^{™ y} series

Batch

Opaque & concentrated media

VASCO™ FLEX

In-situ

"bring the measurement to your sample"

Nano-Materials & Nanoparticles: a new era in science and industry

- Promise of major technologic, economic and societal impacts
- NPs and NMs already in the field: cosmetics, batteries, paints, inks, food, medicines, advanced coatings, aerospace, etc..... And it is just the beginning!

 Booming demand for advanced materials and application requires to scale up production installation (incoming material control, process control, quality control)

➤ New monitoring tools required to migrate NPs from R&D labs to pilot plant and mass production!

Sometimes size matters... In particular for NPs!

- Related to the specific surface of the particles
- Ability to penetrate membranes or interact with surface
- Aggregation and stability of suspensions
- Functionalization and self assembly capabilities
- Optical, mechanical and electrical properties
- Etc.

Many mature characterization techniques for particle size:

- Electronic Microscopy: TEM,
- Electrozone Coulter counter
- Mass sensing: Differential Centrifugal Sedimentation, resonant mass detection
- Optical: Particle tracking, Laser Diffraction, Dynamic Light Scattering (DLS)

DLS vs. other techniques

DLS: 4 decades of size range!!!

L. BACHELIER (1901)

NPs:
hard spheres without
interactions

Viscosity Boltzmann Temperature
$$D = \frac{KT}{3\pi\eta \ \emptyset_H} \qquad \boxed{\emptyset_H = \frac{KT}{3\pi\eta \ D}}$$

EINSTEIN (1905)

Meaning of hydrodynamic diameter \emptyset_H

Hydrodynamic diameter = diameter of the particle + double layer thickness

Hydrodynamic diameter is usually > Core diameter (TEM/SAXS) Value by several nm!

DLS measurement principle:

Measure light scattering fluctuation to probe the Brownian motion

Intensity measurement and correlogram

Considering coherent electromagnetic waves scattered and measured at a specific angle (scattering vector $\mathbf{q} = \mathbf{k}_i - \mathbf{k}_s$):

Detected field and Intensity:

EM field: $E_{tot_detect}(\omega t) = \Sigma E_i exp(i(\mathbf{q}.\mathbf{r}-\omega t))$

Intensity: $I(t) = E_{tot}(t) \times E_{tot}(t)$

Autocorrelation:

Field:
$$g^{(1)}(\tau) = \frac{\langle E^*(t)E(t+\tau) \rangle}{\langle E^2(t) \rangle}$$

Intensity:
$$G^{(2)}(\tau) = \frac{\langle I(t), I(t+\tau) \rangle}{\langle I^2(t) \rangle}$$

This leads :
$$G^{(2)}(\tau) = A + \beta \exp(-2q^2D\tau)$$

with
$$q = \frac{4\pi n_0}{\lambda} \sin(\theta/2)$$

Correlogram representation: Linear vs Logarithmic

Cordouan: linear correlator

Linear time scale

Competitors: Multi-tau correlator

Inversion problem: How to find the best exponential curve fitting the experimental curve?

Fit leads to \mathbb{D} , and \mathbb{D} to the diameter of NPs \emptyset_H .

Inversion algorithms for monomodal and polymodal analysis

Algorithm	Number of populations	Distribution	Model
Cumulants	1 continuous	Yes	Assuming a Gaussian distribution around a specific size (Z _{average})
Pade Laplace	Multi (up to 3) discrete	No	Using Laplace transform of the decay
SBL	Multi continuous	Yes	Using a computing method based of Probabilities

The key point of the results: the FIT and the Residues

FIT= mathematical solution given by the algorithms (red curve)

Residues = difference between Fit and measured correlogram

A good fit = Low amplitude (<0,01) and statistically distributed residues

Monomodal sample (one population) 100 nm Latex NPs

Bi-modal sample (two populations) 30 nm +100 nm Latex NPs mixture

SBL: What is the meaning of the L Curve?

SBL is based on a iterrative algorithm for particle size distribution calculation

The L curve is a graphic representation of SBL successive iterrations according to two figures of Merit: Residues index (X axis) and Sparsity index (Y axis)

- 1 SBL Initial iterration state
- 2 Intermediate iterration state
- 3 Most probable solution
- 4 Final iterration state

The most probable size distribution= lowest Sparsity and Residues indexes

SBL: how to read and tune the L Curve?

$$I_{\text{Scatt}} \sim K \cdot I_0 \left(\frac{(n^2-1)}{(n^2+2)} \right)^2$$
.

Laser Wavelength

Particle refractive index

Rule of thumb #1: light intensity scattered by 1nm spherical particles is 10^6 (one million!) times lower than for 10 nm particles, and 10^{12} time lower than for 100 nm ones respectively

Rule of thumb #2: the scattering efficiency (cross section) of the particles is 2.3 times higher for a laser wavelength @532 nm than that of a laser @656 nm

Light Scattering: some useful rules of thumb (2):

Volume=
$$\frac{\pi}{6} \not O_H^3$$

Rule of thumb #3: the volume occupied by one 1µm – sphere is the same as one occupied by 10⁶ spheres with a 10nm diameter

Particle Size and size distribution: some definitions

Cumulants analysis

$$Z_{avg} = \frac{k_B T q^2}{3\pi \Gamma}$$
:

r is the average decay rate according to relations:

$$\overline{\Gamma} = \int_0^\infty G(\Gamma) \Gamma d\Gamma$$

Z-average can be expressed as the intensity weighted based harmonic mean size

Distribution width =
$$Z_{avg} * \sqrt{PDI}$$

DLS measurement principle: 3 steps process

➤ Measure light scattering fluctuation to probe the Brownian motion

Our Solutions for Nano-particles size characterization

VASCO^{™ y} series

Batch

Opaque & concentrated media

VASCO™ FLEX

In-situ

"bring the measurement to your sample"

- Based on Dynamic Light Scattering (DLS)
- Measurement in dark and/or concentrated suspension
- Size range : from 1nm up to 10µm
- Proprietary inversion algorithm for efficient size distribution analysis
- Technology transfer from French Petroleum Institute

VASCO[™] Y 2 and 3 serie

Batch Measurements

Opaque & concentrated media

Vasco particle size analyzer: a unique sample Cell design

The thin layer analysis mode

- Innovation in the sample cell configuration: Dual Thickness Control (DTC- patented)
- Thin layer analysis: prevents the sample from local heating and multiple-scattering.
- Backscattering detection (135°): low multiple scattering, better contrast for small particles
- Higher detection efficiency in opaque media.
- Solvent-proof cell measurement without consumables
- Proprietary inversion algorithm allowing efficient size distribution analysis
- Technology transfer from the French Institute of Petroleum

Common DLS artefacts and DTC benefits:

Unique Online measurement capabilities

> ON line size kinetics measurement achieved without stop flow thanks to DTC

DLS equipments until today

Disposable cell

Embedded cell

- Mature and standardized method (ISO 13321 (1996) & ISO 22412 (2008)
- Bench top configuration: solutions dedicated to laboratory analysis
- Requires batch sampling: bring the sample to the measurement!
- Need sample preparation: filtering, diluting,
- Time consuming
- Risk of contamination or sample degradation

⇒ Need for a new approach for process monitoring!

A change of paradigm: "bring your measurement to your process!"

Combination of the power of DLS, the flexibility of Optical fiber design

- Non invasive
- Small footprint
- Adjustable working distance /scattering angle
- Alignment laser for easy installation
- High accuracy remote temperature sensor
- Easy maintenance
- Ideal for measurements in glass capillaries, or in situ

VASCO FLEX: The power of DLS, the flexibility of Optical fiber design

- Unique concept: "bring your measurement to your process!"
- The idea: fit the solution to each application specs

Fiber Remote cell option

- Easy to install, easy maintenance
- On-demand fiber length from 1 up to 10 m
- The capabilities of a VASCO with the versatility of a remote cell
- Compact :ability to work in confined environment (glove box)
- Flexibility and upgradability: can easily be detached and replaced by another option
- Dual thin film Thickness Control (patented) for concentrated and or opaque sample.
- No sample heating, no multiple-scattering

- Non invasive
- Small footprint
- Adjustable working distance /scattering angle
- Alignment laser for easy installation
- High accuracy remote temperature sensor
- Flexibility and upgradability : easy switch between options
- Easy maintenance
- Ideal for measurements in glass capillaries, or in situ

Thermalized head option

- Broad temperature range : 5° to 80°C; +/- 0.005°;
- Compact : ability to work in confined environment (glove box);
- Compatible with standard 10x10 mm² cuvette (disposable or QS)
- No cross contamination, easy sampling;
- Fluorescence filter option ;
- Cuvettes options : disposable cell, glass cell, microcell, flow cell ...

Custom setup head option

- Lab set up for dedicated application
- Compatible with standard 10x10 mm2 cuvette (disposable or QS)
- No cross contamination, easy sampling,
- Fluorescence filter option

Examples of use of In situ remote head and applications

Example 1

Combined Remote DLS & High flux SAXS for NPs synthesis monitoring

SNOW CONTROL FP7 Project

Combined Remote DLS & High flux SAXS for NPs synthesis monitoring

On line SiO2 NPs synthesis monitoring

Hydrolysis –condensation method : TEOS in Ethanol (F1) + NH3 in H2O (F2)

Impact of flow rate (F1+F2)

Flow rate (µl/min)

Impact on precursors mixing ratio (F1/F2)

- Consistent results between SAXS and DLS measurements
- Allow to track and tune synthesis process in an accurate way

Example 2

In situ kinetics monitoring of Microwave assisted NPs synthesis

In situ kinetics monitoring of Microwave assisted NPs synthesis

- In situ DLS successfully integrated into a commercial microwave reactor
- Under test and qualification at the College de France-Paris

Real-time & In situ monitoring of Microwave assisted NPs synthesis

Validation tests done on SiO2 slurries

True temperature	Corresponding Viscosity (cP)	Corrected Averaged size (nm)
50°C	0.55	76
90°C	0.3	72
140°C	0.196*	68

- Very consistent an d reproducible results
- 1st demonstration ever done opening up new possibility on NP synthesis monitoring

Example 3

Particle Size Measurement inside supercritical CO₂ synthesis reactor

Particle Size Measurement inside supercritical CO₂ synthesis reactor

Particle Size Measurement in supercritical CO₂ synthesis reactor

- 10 wt% styrene rel. to system, 10 wt% Dowfax 8390 (surfactant) rel. to monomer, 8 wt% Hexa Decane rel. to styrene
- Sonicated for 10 min, 65% input intensity
- CO₂ is used to control the size of nano-emulsion droplets

- Use DLS measurements to correlate turbidity variation with particle size
- Implement accurate control of the size of monomer droplets/NP

Example 4

Environmental application: Nano Plastic detection in Ocean water

Environmental study: Evidence of Plastic Nps in Ocean

Lab study of Plastic NPs formation under oceanic like UV insolation conditions

Other examples...

Magnetic Hyperthermia experiment on NPs for Bio-med applications

Other examples of coupling

Bibliography

Generality and theory about DLS and light scattering:

- Dynamic Light Scattering, John Wiley & Sons, Inc. New York by Berne, B.J. and Pecora, R. (1975)
- Laser Light Scattering: Basic Principles and Practice. Second Edition (Dover Books on Physics)
 by Benjamin Chu (2007-05-11)
- Particle Characterization: Light Scattering Methods, Kluwer Academic Piblisher; ISBN: 978-0-7923-6300-2, by Xu, Renliang,

Some publications with VASCO Flex system:

- Polymer-grafted iron oxide nanoparticles as thermosensitive MRI contrast agents and magnetic nano-heaters, Gauvin Hemery & al, , Journal of Physics D: Applied Physics
- Combining SAXS and DLS for simultaneous measurements and time-resolved monitoring of nanoparticle synthesis; A. Schwamberger & al, Nuclear Instruments and Methods in Physics Research B 343 (2015) 116–122
- Structure and Dynamic Properties of Colloidal Asphaltene Aggregates; Joëlle Eyssautier & al;
 Langmuir, 2012, 28 (33), pp 11997–12004 American Chemical Society
- Investigation on Physical Properties and Morphologies of Microemulsions formed with Sodium Dodecyl Benzenesulfonate, Isobutanol, Brine, and Decane, Using Several Experimental Techniques, Ayako Fukumoto & al, Energy Fuels 2016 to be published- American Chemical Society
- Marine plastic litters: the unanalyzed nano-fraction, Julien Gigault & al; The Royal Society of Chemistry, *Env. Sci. Nano*, 2016, **00**, 1-3

VASCO FLEX specifications

	DTC head	« In situ » head	Thermalized Head	Custom head	
Measurement principle	Optical Fiber Dynamic Light Scattering (DLS)				
OPTICAL HEADS' SPECIFICATIONS					
Temperature Monitoring	Yes	Yes + Customer sensor interfacing	Yes	Yes + Customer sensor interfacing	
Temperature Range (°C)	15°C - 70°C (option 90°C)	Customer range	5°C - 80°C	Customer range	
Min. Sample Volume (μL)	<50µL (cell dependant)				
Sample Cells	Built-in (patented)	In situ	Standard cell*	Custom	
Solvent compatibility	Aqueous & Organic solvents	All solvents			
Scattering Angle (°)	135°	170°	170°	Custom	
Particle size range	0.5 nm – 10 μm (sample dependant)				
Sample concentration range	10 ⁻⁴ % to 40% volume	10 ⁻⁵ % to 5~10% volume (sample dependant)			
Head's weight	3.5 kg	< 0.5 kg	0.5 kg	Custom	
Head's dimensions	110 x 185 x 250 mm (HWD)	50 x 25 x 120 mm (HWD)	100 x 90 x 235 mm (HWD)	Custom	
Options & accessories	Online measurement	Thermalized cell (10-70°C)	-	-	

Our product portfolio

PARTICLE SIZE ANALYZER by DLS

- Patented DTC technology for concentrated / absorbent samples
- Unique algorithms (Pade Laplace & SBL) for a better distribution analysis
 - Flex: In-situ measurement / easy coupling to reactors
 - Patent pending on new applications
 - Synthesis kinetics monitoring

ZETA POTENTIAL ANALYZER

- The best resolution thanks to modern data acquisition & computing
- Unique carbon electrodes

- Unique LIBD technology
- Size range: 15 to 1000nm
- Cc ranges :

10³ – 10¹¹ part/ml (det. only)

10⁶ – 10¹¹ part/ml (det. + size)

ELECTRON MICROSCOPY

• Unique TEM/SEM/STEM benchtop microscope

Glow discharge for EM grids functionalization

Thank you for your attention

For more information:

www.cordouan-tech.com

sales@cordouan-tech.com

Tel: +33 (0)5 56 15 75 39

Follow Cordouan Technologies on Twitter!

